Zum Hauptinhalt springen

A new intelligently optimized model reference adaptive controller using GA and WOA-based MPPT techniques for photovoltaic systems.

Deghfel, N ; Badoud, AE ; et al.
In: Scientific reports, Jg. 14 (2024-03-21), Heft 1, S. 6827
Online academicJournal

Titel:
A new intelligently optimized model reference adaptive controller using GA and WOA-based MPPT techniques for photovoltaic systems.
Autor/in / Beteiligte Person: Deghfel, N ; Badoud, AE ; Merahi, F ; Bajaj, M ; Zaitsev, I
Link:
Zeitschrift: Scientific reports, Jg. 14 (2024-03-21), Heft 1, S. 6827
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2024
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-024-57610-0
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Sci Rep] 2024 Mar 21; Vol. 14 (1), pp. 6827. <i>Date of Electronic Publication: </i>2024 Mar 21.
  • References: Lyu, W. et al. Impact of battery electric vehicle usage on air quality in three Chinese first-tier cities. Sci. Rep. 14, 21. https://doi.org/10.1038/s41598-023-50745-6 (2024). (PMID: 10.1038/s41598-023-50745-63816760010761960) ; Li, P., Hu, J., Qiu, L., Zhao, Y. & Ghosh, B. K. A distributed economic dispatch strategy for power-water networks. IEEE Trans. Control Netw. Syst. 9, 356–366. https://doi.org/10.1109/TCNS.2021.3104103 (2022). (PMID: 10.1109/TCNS.2021.3104103) ; Duan, Y., Zhao, Y. & Hu, J. An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis. Sustain Energy Grids Netw. 34, 101004. https://doi.org/10.1016/j.segan.2023.101004 (2023). (PMID: 10.1016/j.segan.2023.101004) ; Yan, C., Zou, Y., Wu, Z. & Maleki, A. Effect of various design configurations and operating conditions for optimization of a wind/solar/hydrogen/fuel cell hybrid microgrid system by a bio-inspired algorithm. Int. J. Hydrog. Energy 60, 378–391. https://doi.org/10.1016/j.ijhydene.2024.02.004 (2024). (PMID: 10.1016/j.ijhydene.2024.02.004) ; Yang, C. et al. Optimized integration of solar energy and liquefied natural gas regasification for sustainable urban development: Dynamic modeling, data-driven optimization, and case study. J. Clean Prod. 447, 141405. https://doi.org/10.1016/j.jclepro.2024.141405 (2024). (PMID: 10.1016/j.jclepro.2024.141405) ; Panda, S. et al. A comprehensive review on demand side management and market design for renewable energy support and integration. Energy Rep. 10, 2228–2250. https://doi.org/10.1016/j.egyr.2023.09.049 (2023). (PMID: 10.1016/j.egyr.2023.09.049) ; Sahoo, G. K., Choudhury, S., Rathore, R. S., Bajaj, M. & Dutta, A. K. Scaled conjugate-artificial neural network-based novel framework for enhancing the power quality of grid-tied microgrid systems. Alex. Eng. J. 80, 520–541. https://doi.org/10.1016/j.aej.2023.08.081 (2023). (PMID: 10.1016/j.aej.2023.08.081) ; Mao, M. et al. Classification and summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies. Energy Rep. 6, 1312–1327. https://doi.org/10.1016/j.egyr.2020.05.013 (2020). (PMID: 10.1016/j.egyr.2020.05.013) ; Kiran, S. R., Murali, M., Hussaian Basha, C. & Fathima, F. Design of artificial intelligence-based hybrid MPPT controllers for partially shaded solar PV system with non-isolated boost converter. Comput. Vis. Robot. 13, 353–363. https://doi.org/10.1007/978-981-16-8225-4_28 (2022). (PMID: 10.1007/978-981-16-8225-4_28) ; Shirkhani, M. et al. A review on microgrid decentralized energy/voltage control structures and methods. Energy Rep. 10, 368–380. https://doi.org/10.1016/j.egyr.2023.06.022 (2023). (PMID: 10.1016/j.egyr.2023.06.022) ; Hussaian Basha, C. et al. Design of GWO based fuzzy MPPT controller for fuel cell fed EV application with high voltage gain DC-DC converter. Mater. Today Proc. 92, 66–72. https://doi.org/10.1016/j.matpr.2023.03.727 (2023). (PMID: 10.1016/j.matpr.2023.03.727) ; Mohammadi, E., Alizadeh, M., Asgarimoghaddam, M., Wang, X. & Simoes, M. G. A review on application of artificial intelligence techniques in microgrids. IEEE J. Emerg. Sel. Top. Ind. Electron. 3, 878–890. https://doi.org/10.1109/JESTIE.2022.3198504 (2022). (PMID: 10.1109/JESTIE.2022.3198504) ; Badoud, A. E. MPPT controller for PV array under partially shaded condition. Alger. J. Renew. Energy Sustain. Dev. 01, 99–111. https://doi.org/10.46657/ajresd.2019.1.1.10 (2019). (PMID: 10.46657/ajresd.2019.1.1.10) ; Badoud, A. E. Real-time experimental analysis of hybrid BG-FL based MPPT controller for a photovoltaic system under partial shading conditions. In 2022 19th Int. Multi-Conference Syst. Signals Devices, IEEE; pp. 1409–14 (2022). https://doi.org/10.1109/SSD54932.2022.9955848. ; Hussaian Basha, C. H., Naresh, T., Amaresh, K., Preethi Raj, P. M. & Akram, P. Design and performance analysis of common duty ratio controlled zeta converter with an adaptive P&O MPPT controller. Proc. Int. Conf. Data Sci. Appl. 42, 657–671. https://doi.org/10.1007/978-981-16-5120-5_50 (2022). (PMID: 10.1007/978-981-16-5120-5_50) ; Farh, H. M. H., Fathy, A., Al-Shamma’a, A. A., Mekhilef, S. & Al-Shaalan, A. M. Global research trends on photovoltaic maximum power extraction: Systematic and scientometric analysis. Sustain. Energy Technol. Assess. 61, 103585. https://doi.org/10.1016/j.seta.2023.103585 (2024). (PMID: 10.1016/j.seta.2023.103585) ; Rafikiran, S. et al. Design and performance analysis of hybrid MPPT controllers for fuel cell fed DC–DC converter systems. Energy Rep. 9, 5826–5842. https://doi.org/10.1016/j.egyr.2023.05.030 (2023). (PMID: 10.1016/j.egyr.2023.05.030) ; Dadkhah, J. & Niroomand, M. Optimization methods of MPPT parameters for PV systems: Review, classification, and comparison. J. Mod. Power Syst. Clean Energy 9, 225–236. https://doi.org/10.35833/MPCE.2019.000379 (2021). (PMID: 10.35833/MPCE.2019.000379) ; Murali, M., Basha, C. H., Kiran, S. R. & Amaresh, K. Design and analysis of neural network-based MPPT technique for solar power-based electric vehicle application. In Proc. Fourth Int. Conf. Inven. Mater. Sci. Appl., 150, pp. 529–41 (2022). https://doi.org/10.1007/978-981-16-4321-7_44. ; Abderrahim, Z., Eddine, H. K. & Sabir, M. A new improved variable step size MPPT method for photovoltaic systems using grey wolf and whale optimization technique based PID controller. J. Eur. Des. Systèmes Autom. 54, 175–185. https://doi.org/10.18280/jesa.540120 (2021). (PMID: 10.18280/jesa.540120) ; Basha, C. H. H. & Rani, C. A new single switch DC-DC converter for PEM fuel cell-based electric vehicle system with an improved beta-fuzzy logic MPPT controller. Soft Comput. 26, 6021–6040. https://doi.org/10.1007/s00500-022-07049-0 (2022). (PMID: 10.1007/s00500-022-07049-0) ; Khadidja, S., Mountassar, M. & Mhamed, B. Comparative study of incremental conductance and perturb & observe MPPT methods for photovoltaic system. In 2017 Int. Conf. Green Energy Convers. Syst., IEEE, pp. 1–6 (2017). https://doi.org/10.1109/GECS.2017.8066230. ; Alsumiri, M. Residual incremental conductance based nonparametric MPPT control for solar photovoltaic energy conversion system. IEEE Access 7, 87901–87906. https://doi.org/10.1109/ACCESS.2019.2925687 (2019). (PMID: 10.1109/ACCESS.2019.2925687) ; Hussaian Basha, C., Rani, C., Brisilla, R. M. & Odofin, S. Simulation of metaheuristic intelligence MPPT techniques for solar PV under partial shading condition. Soft Comput. Probl. Solving 46, 773–785. https://doi.org/10.1007/978-981-15-0035-0_63 (2020). (PMID: 10.1007/978-981-15-0035-0_63) ; Basha, C. H. & Rani, C. Design and analysis of transformerless, high step-up, boost DC–DC converter with an improved VSS-RBFA based MPPT controller. Int. Trans. Electr. Energy Syst. 30, 1041–1044. https://doi.org/10.1002/2050-7038.12633 (2020). (PMID: 10.1002/2050-7038.12633) ; Fangrui, L., Yong, K., Yu, Z., Shanxu, D. Comparison of P&O and hill climbing MPPT methods for grid-connected PV converter. In 2008 3rd IEEE Conf. Ind. Electron. Appl., IEEE, pp. 804–7 (2008). https://doi.org/10.1109/ICIEA.2008.4582626. ; Govinda Chowdary, V., Udhay Sankar, V., Mathew, D., Hussaian Basha, C. & Rani, C. Hybrid fuzzy logic-based MPPT for wind energy conversion system. Soft Comput. Probl. Solving 150, 951–968. https://doi.org/10.1007/978-981-15-0184-5_81 (2020). (PMID: 10.1007/978-981-15-0184-5_81) ; Wang, Y., Jiang, X., Xie, X., Yang, X. & Xiao, X. Identifying sources of subsynchronous resonance using wide-area phasor measurements. IEEE Trans. Power Deliv. 36, 3242–3254. https://doi.org/10.1109/TPWRD.2020.3037289 (2021). (PMID: 10.1109/TPWRD.2020.3037289) ; Wang, H. et al. A junction temperature monitoring method for IGBT modules based on turn-off voltage with convolutional neural networks. IEEE Trans. Power Electron. 38, 10313–10328. https://doi.org/10.1109/TPEL.2023.3278675 (2023). (PMID: 10.1109/TPEL.2023.3278675) ; Killi, M. & Samanta, S. Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems. IEEE Trans. Ind. Electron. 62, 5549–5559. https://doi.org/10.1109/TIE.2015.2407854 (2015). (PMID: 10.1109/TIE.2015.2407854) ; Shang, L., Guo, H. & Zhu, W. An improved MPPT control strategy based on incremental conductance algorithm. Prot. Control Mod. Power Syst. 5, 14. https://doi.org/10.1186/s41601-020-00161-z (2020). (PMID: 10.1186/s41601-020-00161-z) ; Abo-Khalil, A. G., El-Sharkawy, I. I., Radwan, A. & Memon, S. Influence of a hybrid MPPT technique, SA-P&O, on PV system performance under partial shading conditions. Energies 16, 577. https://doi.org/10.3390/en16020577 (2023). (PMID: 10.3390/en16020577) ; Bollipo, R. B., Mikkili, S. & Bonthagorla, P. K. Critical review on PV MPPT techniques: Classical, intelligent and optimisation. IET Renew. Power Gener. 14, 1433–1452. https://doi.org/10.1049/iet-rpg.2019.1163 (2020). (PMID: 10.1049/iet-rpg.2019.1163) ; Yilmaz, U., Kircay, A. & Borekci, S. PV system fuzzy logic MPPT method and PI control as a charge controller. Renew. Sustain. Energy Rev. 81, 994–1001. https://doi.org/10.1016/j.rser.2017.08.048 (2018). (PMID: 10.1016/j.rser.2017.08.048) ; Basha, C. H. & Rani, C. Design and analysis of transformerless, high step-up, boost DC–DC converter with an improved VSS-RBFA based MPPT controller. Int. Trans. Electr. Energy Syst. 30, 2036. https://doi.org/10.1002/2050-7038.12633 (2020). (PMID: 10.1002/2050-7038.12633) ; Bouselham, L., Hajji, M., Hajji, B. & Bouali, H. A new MPPT-based ANN for photovoltaic system under partial shading conditions. Energy Procedia 111, 924–933. https://doi.org/10.1016/j.egypro.2017.03.255 (2017). (PMID: 10.1016/j.egypro.2017.03.255) ; Hussaian Basha, C., Bansal, V., Rani, C., Brisilla, R. M. & Odofin, S. Development of cuckoo search MPPT algorithm for partially shaded solar PV SEPIC converter. Soft Comput. Probl. Solving 12, 727–736. https://doi.org/10.1007/978-981-15-0035-0_59 (2020). (PMID: 10.1007/978-981-15-0035-0_59) ; Kiran, S. R. et al. Reduced simulative performance analysis of variable step size ANN based MPPT techniques for partially shaded solar PV systems. IEEE Access 10, 48875–48889. https://doi.org/10.1109/ACCESS.2022.3172322 (2022). (PMID: 10.1109/ACCESS.2022.3172322) ; Ali, K. et al. Robust integral backstepping based nonlinear MPPT control for a PV system. Energies 12, 3180. https://doi.org/10.3390/en12163180 (2019). (PMID: 10.3390/en12163180) ; Ahmad, F. F., Ghenai, C., Hamid, A. K. & Bettayeb, M. Application of sliding mode control for maximum power point tracking of solar photovoltaic systems: A comprehensive review. Annu. Rev. Control 49, 173–196. https://doi.org/10.1016/j.arcontrol.2020.04.011 (2020). (PMID: 10.1016/j.arcontrol.2020.04.011) ; Bouguerra, A., Badoud, A. E., Mekheilef, S. & Chouder, A. Comparative study of perturb and observe incremental conductance and particle swarm optimisation for maximum power point tracking under changing irradiance. In 2023 2nd Int. Conf. Electron. Energy Meas., IEEE, pp. 1–7 (2023). https://doi.org/10.1109/IC2EM59347.2023.10419737. ; Hadji, S., Gaubert, J.-P. & Krim, F. Real-time genetic algorithms-based MPPT: Study and comparison (theoretical an experimental) with conventional methods. Energies 11, 459. https://doi.org/10.3390/en11020459 (2018). (PMID: 10.3390/en11020459) ; Guo, M. W., Wang, J. S., Zhu, L. F., Guo, S. S. & Xie, W. An improved grey wolf optimizer based on tracking and seeking modes to solve function optimization problems. IEEE Access 8, 69861–69893. https://doi.org/10.1109/ACCESS.2020.2984321 (2020). (PMID: 10.1109/ACCESS.2020.2984321) ; Ebrahim, M. A., Osama, A., Kotb, K. M. & Bendary, F. Whale inspired algorithm based MPPT controllers for grid-connected solar photovoltaic system. Energy Procedia 162, 77–86. https://doi.org/10.1016/j.egypro.2019.04.009 (2019). (PMID: 10.1016/j.egypro.2019.04.009) ; Badoud, A. E., Ayat, Y. & Mekhilef, S. Development and experimental validation of novel robust MPPT controller based on bond graph and fuzzy logic for PV system under variable weather conditions. Int. Trans. Electr. Energy Syst. https://doi.org/10.1002/2050-7038.13091 (2021). (PMID: 10.1002/2050-7038.13091) ; Xiao, Y., Zhao, Y., Shen, Z. & Jiao, H. SMGSA algorithm-based MPPT control strategy. J. Power Electron. https://doi.org/10.1007/s43236-023-00757-2 (2024). (PMID: 10.1007/s43236-023-00757-2) ; Mohanty, S. et al. Demand side management of electric vehicles in smart grids: A survey on strategies, challenges, modeling, and optimization. Energy Rep. 8, 12466–12490. https://doi.org/10.1016/j.egyr.2022.09.023 (2022). (PMID: 10.1016/j.egyr.2022.09.023) ; Panda, S. et al. Residential demand side management model, optimization and future perspective: A review. Energy Rep. 8, 3727–3766. https://doi.org/10.1016/j.egyr.2022.02.300 (2022). (PMID: 10.1016/j.egyr.2022.02.300) ; Arsalan, M. et al. MPPT for photovoltaic system using nonlinear backstepping controller with integral action. Sol. Energy 170, 192–200. https://doi.org/10.1016/j.solener.2018.04.061 (2018). (PMID: 10.1016/j.solener.2018.04.061) ; Harrag, A. & Messalti, S. Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller. Renew. Sustain. Energy Rev. 49, 1247–1260. https://doi.org/10.1016/j.rser.2015.05.003 (2015). (PMID: 10.1016/j.rser.2015.05.003) ; Jalali Zand, S. et al. Optimized fuzzy controller based on cuckoo optimization algorithm for maximum power-point tracking of photovoltaic systems. IEEE Access 10, 71699–71716. https://doi.org/10.1109/ACCESS.2022.3184815 (2022). (PMID: 10.1109/ACCESS.2022.3184815) ; Ammar, H. H., Azar, A. T., Mahmoud, M. I. & Shalaby, R. Evaluation of the performance of a FONN-based MPPT control for a photovoltaic watering system. Ain Shams Eng. J. 15, 102329. https://doi.org/10.1016/j.asej.2023.102329 (2024). (PMID: 10.1016/j.asej.2023.102329) ; Hussaian Basha, C. H. & Rani, C. Performance analysis of MPPT techniques for dynamic irradiation condition of solar PV. Int. J. Fuzzy Syst. 22, 2577–2598. https://doi.org/10.1007/s40815-020-00974-y (2020). (PMID: 10.1007/s40815-020-00974-y) ; Khanna, R., Qinhao, Z., Stanchina, W. E., Reed, G. F. & Zhi-Hong, M. Maximum power point tracking using model reference adaptive control. IEEE Trans. Power Electron. 29, 1490–1499. https://doi.org/10.1109/TPEL.2013.2263154 (2014). (PMID: 10.1109/TPEL.2013.2263154) ; Tariba, N., Haddou, A., El Omari, H. & El Omari, H. Design and implementation an adaptive control for MPPT systems using model reference adaptive controller. In 2016 Int. Renew. Sustain. Energy Conf., IEEE, pp. 165–72 (2016). https://doi.org/10.1109/IRSEC.2016.7984021. ; Manna, S. et al. Design and implementation of a new adaptive MPPT controller for solar PV systems. Energy Rep. 9, 1818–1829. https://doi.org/10.1016/j.egyr.2022.12.152 (2023). (PMID: 10.1016/j.egyr.2022.12.152) ; Basha, C. H. & Rani, C. Different conventional and soft computing MPPT techniques for solar PV systems with high step-up boost converters: A comprehensive analysis. Energies 13, 371. https://doi.org/10.3390/en13020371 (2020). (PMID: 10.3390/en13020371) ; Pankaj, S. & Shailendra, J. R. N. Effect of adaptation gain on system performance for model reference adaptive control scheme using MIT rule. Int. J. Electr. Comput. Eng. 4, 1547–1552 (2010). ; Mirjalili, S. & Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 (2016). (PMID: 10.1016/j.advengsoft.2016.01.008) ; Dadkhah Tehrani, R. & Shabaninia, F. Two-level control of photovoltaic systems using global perturbation-based extremum seeking control and model reference adaptive control. Trans. Inst. Meas. Control 40, 3709–3720. https://doi.org/10.1177/0142331217731620 (2018). (PMID: 10.1177/0142331217731620) ; Wang, H., Sun, W., Jiang, D. & Qu, R. A MTPA and flux-weakening curve identification method based on physics-informed network without calibration. IEEE Trans. Power Electron. 38, 12370–12375. https://doi.org/10.1109/TPEL.2023.3295913 (2023). (PMID: 10.1109/TPEL.2023.3295913) ; Hu, F. et al. Research on the evolution of China’s photovoltaic technology innovation network from the perspective of patents. Energy Strateg. Rev. 51, 101309. https://doi.org/10.1016/j.esr.2024.101309 (2024). (PMID: 10.1016/j.esr.2024.101309) ; Tamalouzt, S. et al. Enhanced direct reactive power control-based multi-level inverter for DFIG wind system under variable speeds. Sustainability 13, 9060. https://doi.org/10.3390/su13169060 (2021). (PMID: 10.3390/su13169060) ; Choudhury, S., Bajaj, M., Dash, T., Kamel, S. & Jurado, F. Multilevel inverter: A survey on classical and advanced topologies, control schemes, applications to power system and future prospects. Energies 14, 5773. https://doi.org/10.3390/en14185773 (2021). (PMID: 10.3390/en14185773) ; Mohapatra, B. et al. Optimizing grid-connected PV systems with novel super-twisting sliding mode controllers for real-time power management. Sci. Rep. 14, 4646. https://doi.org/10.1038/s41598-024-55380-3 (2024). (PMID: 10.1038/s41598-024-55380-33840946610897222) ; Liu, G. Data collection in MI-assisted wireless powered underground sensor networks: Directions, recent advances, and challenges. IEEE Commun. Mag. 59, 132–138. https://doi.org/10.1109/MCOM.001.2000921 (2021). (PMID: 10.1109/MCOM.001.2000921) ; Hou, M., Zhao, Y. & Ge, X. Optimal scheduling of the plug-in electric vehicles aggregator energy and regulation services based on grid to vehicle. Int. Trans. Electr. Energy Syst. 27, e2364. https://doi.org/10.1002/etep.2364 (2017). (PMID: 10.1002/etep.2364) ; Mohapatra, B. et al. Real-time validation of a novel IAOA technique-based offset hysteresis band current controller for grid-tied photovoltaic system. Energies 15, 8790. https://doi.org/10.3390/en15238790 (2022). (PMID: 10.3390/en15238790) ; Choudhury, S. et al. Energy management and power quality improvement of microgrid system through modified water wave optimization. Energy Rep. 9, 6020–6041. https://doi.org/10.1016/j.egyr.2023.05.068 (2023). (PMID: 10.1016/j.egyr.2023.05.068) ; Rekioua, D. et al. Optimization and intelligent power management control for an autonomous hybrid wind turbine photovoltaic diesel generator with batteries. Sci. Rep. 13, 21830. https://doi.org/10.1038/s41598-023-49067-4 (2023). (PMID: 10.1038/s41598-023-49067-43807126510710487) ; Manna, S., Akella, A. K. & Singh, D. K. A novel MRAC-MPPT scheme to enhance speed and accuracy in PV systems. Iran J. Sci. Technol. Trans. Electr. Eng. 47, 233–254. https://doi.org/10.1007/s40998-022-00542-0 (2023). (PMID: 10.1007/s40998-022-00542-0) ; Manna, S., Akella, A. K. & Singh, D. K. Novel Lyapunov-based rapid and ripple-free MPPT using a robust model reference adaptive controller for solar PV system. Prot. Control Mod. Power Syst. 8, 13. https://doi.org/10.1186/s41601-023-00288-9 (2023). (PMID: 10.1186/s41601-023-00288-9) ; Naghmash, et al. Backstepping based non-linear control for maximum power point tracking in photovoltaic system. Sol. Energy 159, 134–141. https://doi.org/10.1016/j.solener.2017.10.062 (2018). (PMID: 10.1016/j.solener.2017.10.062) ; Azaroual, M. et al. Optimal solution of peer-to-peer and peer-to-grid trading strategy sharing between prosumers with grid-connected photovoltaic/wind turbine/battery storage systems. Int. J. Energy Res. 2023, 1–17. https://doi.org/10.1155/2023/6747936 (2023). (PMID: 10.1155/2023/6747936) ; Sivapriya, A. et al. Real-time hardware-in-loop based open circuit fault diagnosis and fault tolerant control approach for cascaded multilevel inverter using artificial neural network. Front. Energy Res. https://doi.org/10.3389/fenrg.2022.1083662 (2023). (PMID: 10.3389/fenrg.2022.1083662) ; Pasik-Duncan, B. Adaptive control. IEEE Control Syst. 16, 87. https://doi.org/10.1109/MCS.1996.487415 (1996). (PMID: 10.1109/MCS.1996.487415) ; Lei, Y., Yanrong, C., Hai, T., Ren, G. & Wenhuan, W. DGNet: An adaptive lightweight defect detection model for new energy vehicle battery current collector. IEEE Sens. J. 23, 29815–29830. https://doi.org/10.1109/JSEN.2023.3324441 (2023). (PMID: 10.1109/JSEN.2023.3324441) ; Li, S., Zhao, X., Liang, W., Hossain, M. T. & Zhang, Z. A fast and accurate calculation method of line breaking power flow based on Taylor expansion. Front. Energy Res. https://doi.org/10.3389/fenrg.2022.943946 (2022). (PMID: 10.3389/fenrg.2022.943946) ; Mirjalili, S. Evolutionary Algorithms and Neural Networks Vol. 780 (Springer, 2019). https://doi.org/10.1007/978-3-319-93025-1 . (PMID: 10.1007/978-3-319-93025-1) ; Lu, Y., Tan, C., Ge, W., Zhao, Y. & Wang, G. Adaptive disturbance observer-based improved super-twisting sliding mode control for electromagnetic direct-drive pump. Smart Mater. Struct. 32, 017001. https://doi.org/10.1088/1361-665X/aca84e (2023). (PMID: 10.1088/1361-665X/aca84e) ; Sun, R., Dai, Y. & Cheng, Q. An adaptive weighting strategy for multisensor integrated navigation in urban areas. IEEE Internet Things J. 10, 12777–12786. https://doi.org/10.1109/JIOT.2023.3256008 (2023). (PMID: 10.1109/JIOT.2023.3256008) ; Hamed, S. B. et al. A robust MPPT approach based on first-order sliding mode for triple-junction photovoltaic power system supplying electric vehicle. Energy Rep. 9, 4275–4297. https://doi.org/10.1016/j.egyr.2023.02.086 (2023). (PMID: 10.1016/j.egyr.2023.02.086) ; Kalaiarasi, N. et al. Performance evaluation of various Z-source inverter topologies for PV applications using AI-based MPPT techniques. Int. Trans. Electr. Energy Syst. 2023, 1–16. https://doi.org/10.1155/2023/1134633 (2023). (PMID: 10.1155/2023/1134633) ; Yang, M. et al. Digital twin-driven industrialization development of underwater gliders. IEEE Trans. Ind. Inform. 19, 9680–9690. https://doi.org/10.1109/TII.2023.3233972 (2023). (PMID: 10.1109/TII.2023.3233972) ; Li, R. et al. Mechanical safety prediction of a battery-pack system under low speed frontal impact via machine learning. Eng. Anal. Bound. Elem. 160, 65–75. https://doi.org/10.1016/j.enganabound.2023.12.031 (2024). (PMID: 10.1016/j.enganabound.2023.12.031) ; Tran, T.-S. & Kieu, T.-T.-H. Choice of selection methods in genetic algorithms for power system state estimation. Adv. Eng. Res. Appl. https://doi.org/10.1007/978-3-030-64719-3_26 (2021). (PMID: 10.1007/978-3-030-64719-3_26) ; Yu, J., Dong, X., Li, Q., Lu, J. & Ren, Z. Adaptive practical optimal time-varying formation tracking control for disturbed high-order multi-agent systems. IEEE Trans. Circuits Syst. I Regul. Pap. 69, 2567–2578. https://doi.org/10.1109/TCSI.2022.3151464 (2022). (PMID: 10.1109/TCSI.2022.3151464) ; Xu, B., Wang, X., Zhang, J., Guo, Y. & Razzaqi, A. A. A novel adaptive filtering for cooperative localization under compass failure and non-Gaussian noise. IEEE Trans. Veh. Technol. 71, 3737–3749. https://doi.org/10.1109/TVT.2022.3145095 (2022). (PMID: 10.1109/TVT.2022.3145095) ; Mfetoum, I. M. et al. A multilayer perceptron neural network approach for optimizing solar irradiance forecasting in Central Africa with meteorological insights. Sci. Rep. 14, 3572. https://doi.org/10.1038/s41598-024-54181-y (2024). (PMID: 10.1038/s41598-024-54181-y3834704610861485) ; Naoussi, S. R. D. et al. Enhancing MPPT performance for partially shaded photovoltaic arrays through backstepping control with Genetic Algorithm-optimized gains. Sci. Rep. 14, 3334. https://doi.org/10.1038/s41598-024-53721-w (2024). (PMID: 10.1038/s41598-024-53721-w38336800) ; Mosaad, A. M., Attia, M. A. & Abdelaziz, A. Y. Whale optimization algorithm to tune PID and PIDA controllers on AVR system. Ain Shams Eng. J. 10, 755–767. https://doi.org/10.1016/j.asej.2019.07.004 (2019). (PMID: 10.1016/j.asej.2019.07.004) ; Gharehchopogh, F. S. & Gholizadeh, H. A comprehensive survey: Whale optimization algorithm and its applications. Swarm Evol. Comput. 48, 1–24. https://doi.org/10.1016/j.swevo.2019.03.004 (2019). (PMID: 10.1016/j.swevo.2019.03.004) ; Kayişli, K. & Caglayan, R. Z. Twisting sliding mode control based maximum power point tracking. Balk. J. Electr. Comput. Eng. 10, 356–362. https://doi.org/10.17694/bajece.1137170 (2022). (PMID: 10.17694/bajece.1137170) ; Kavya, M. & Jayalalitha, S. A novel coarse and fine control algorithm to improve maximum power point tracking (MPPT) efficiency in photovoltaic system. ISA Trans. 121, 180–190. https://doi.org/10.1016/j.isatra.2021.03.036 (2022). (PMID: 10.1016/j.isatra.2021.03.036) ; Ali, Z. M. et al. Novel hybrid improved bat algorithm and fuzzy system based MPPT for photovoltaic under variable atmospheric conditions. Sustain. Energy Technol. Assess. 52, 102156. https://doi.org/10.1016/j.seta.2022.102156 (2022). (PMID: 10.1016/j.seta.2022.102156) ; Kayisli, K. Super twisting sliding mode-type 2 fuzzy MPPT control of solar PV system with parameter optimization under variable irradiance conditions. Ain Shams Eng. J. 14, 101950. https://doi.org/10.1016/j.asej.2022.101950 (2023). (PMID: 10.1016/j.asej.2022.101950)
  • Contributed Indexing: Keywords: Adaptive neuro-fuzzy inference system; Convergence analysis; Genetic algorithm; Maximum power point tracking; Model reference adaptive control; Photovoltaic systems; Renewable energy
  • Entry Date(s): Date Created: 20240322 Latest Revision: 20240507
  • Update Code: 20240508

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -